Surface Tension of Alcohol + Water from 20 to 50 Reprinted with permission by the Publisher. This material is # Gonzalo Vázquez,* Estrella Alvarez, and José M. Navaza protected by copyright and cannot be further reproduced or stored electronically without publisher permission and payment of a royally fee for each copy made. All rights Department of Chemical Engineering, University of Santiago de Compostela, 15706 Santiago, Spain The surface tension of aqueous solutions of methanol, ethanol, 1-propanol, and 2-propanol was measured over the entire concentration range at temperatures of 20–50 °C. The experimental values were correlated with temperature and with mole fraction. The maximum deviation was in both cases always less than # Introduction The surface tension of mixtures is a physical property of great importance for mass transfer processes such as distillation, extraction, or absorption. In relation to our research (Vazquez et al., 1990) on how mass transfer is influenced by the Marangoni effect (spontaneous interfacial turbulence generated by surface tension gradients), in this work we measured the surface tension of methanol + water, ethanol + water, 1-propanol + water, and 2-propanol + water over the entire concentration range at temperatures of 20-50 °C. # Experimental Section Aqueous solutions of methanol, ethanol, 1-propanol, and 2-propanol were prepared with distilled, deionized water. The alcohols were Merck products of nominal purity >99.7%. All the solutions were prepared by weight with Table 1. Surface Tension of Methanol (1) + Water (2) | | | σ/(mN·m ⁻¹) at t/°C | | | | | | | |--------|-------|---------------------------------|-------|-------|-------|-------|-------|-------| | mass % | x_1 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | 0 | 0.000 | 72.75 | 72.01 | 71.21 | 70.42 | 69.52 | 68.84 | 67.92 | | 5 | 0.029 | 63.46 | 62.77 | 61.98 | 61.14 | 60.32 | 59.58 | 58.77 | | 10 | 0.059 | 56.87 | 56.18 | 55.41 | 54.67 | 54.01 | 53.27 | 52.46 | | 15 | 0.090 | 51.83 | 51.17 | 50.43 | 49.76 | 47.04 | 48.39 | 47.62 | | 20 | 0.123 | 47.86 | 47.21 | 46.56 | 45.84 | 45.17 | 44.48 | 43.76 | | 25 | 0.158 | 44.38 | 43.78 | 43.14 | 42.51 | 41.82 | 41.21 | 40.57 | | 30 | 0.194 | 41.67 | 41.09 | 40.43 | 39.77 | 39.14 | 38.53 | 37.88 | | 40 | 0.273 | 37.02 | 36.51 | 35.90 | 35,36 | 34.79 | 34.18 | 33.62 | | 50 | 0.360 | 33.37 | 32.86 | 32,33 | 31.85 | 31.26 | 30.77 | 30.28 | | 60 | 0.458 | 30.32 | 29.83 | 29.34 | 28.86 | 28.44 | 27.93 | 27.54 | | 70 | 0.568 | 27.91 | 27.48 | 26.99 | 26.56 | 26.12 | 25.64 | 25.23 | | 80 | 0.692 | 25.98 | 25.54 | 25.06 | 24.60 | 24.21 | 23.72 | 23.33 | | 90 | 0.835 | 24.37 | 23.93 | 23.43 | 22,95 | 22.57 | 22.06 | 21.67 | | 100 | 1.000 | 22.95 | 22.51 | 22.01 | 21.52 | 21.13 | 20.61 | 20.21 | | | | | | | | | | | Table 2. Surface Tension of Ethanol (1) + Water (2) | | • | σ/(mN·m ⁻¹) at t/°C | | | | | | | |--------|--------------------|---------------------------------|-------|-------|-------|--------|-------|-------| | mass % | \boldsymbol{x}_1 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | 0 | 0.000 | 72.75 | 72.01 | 71.21 | 70.42 | 69.52 | 68.84 | 67.92 | | 5 | 0.020 | 56.41 | 55.73 | 55.04 | 54.36 | 53.63 | 52.96 | 52.16 | | 10 | 0.042 | 48.14 | 47.53 | 46.88 | 46.24 | 45.58 | 44.97 | 44.26 | | 15 | 0.065 | 42.72 | 42.08 | 41.49 | 40.88 | 40.27 | 39.64 | 38.96 | | 20 | 0.089 | 38.56 | 37.97 | 37.38 | 36.83 | 36.28 | 35.71 | 35.12 | | 25 | 0.115 | 36.09 | 35.51 | 34.96 | 34.41 | 33.86 | 33.31 | 32.76 | | 30 | 0.144 | 33.53 | 32.98 | 32.43 | 31.94 | .31.42 | 30.89 | 30.34 | | 40 | 0.207 | 30.69 | 30.16 | 29.68 | 29.27 | 28.77 | 28.28 | 27.82 | | · 50 · | 0.281 | 28.51 | 27.96 | 27.53 | 27.11 | 26.64 | 26.21 | 25.78 | | 60 | 0.370 | 26.72 | 26.23 | 25.81 | 25.43 | 24.97 | 24.54 | 24.11 | | 70 | 0.477 | 25.48 | 25.01 | 24.60 | 24.21 | 23.76 | 23.33 | 22.92 | | 80 | 0.610 | 24.32 | 23.82 | 23.39 | 23.01 | 22.54 | 22.12 | 21,71 | | 90 | 0.779 | 28.23 | 22.72 | 22.32 | 21.94 | 21.53 | 21.13 | 20.71 | | 100 | 1.000 | 22.31 | 21.82 | 21.41 | 21.04 | 20.62 | 20.22 | 19.82 | Table 3. Surface Tension of 1-Propanol (1) + Water (2) | | | $a/(mN\cdot m^{-1})$ at $t/^{\circ}C$ | | | | | | | |---------------|-------|---------------------------------------|---------------|-------|-------|-------|-------|-------| | <u>mass %</u> | x_1 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | 0 | 0.000 | 72.75 | 72.01 | 71.21 | 70.42 | 69.52 | 68.84 | 67.92 | | 5 | 0.016 | 42.51 | 41.83 | 41.16 | 40.53 | 39.86 | 39.22 | 38.54 | | 10 | 0.032 | 34.86 | 34.32 | 33.81 | 33.20 | 32.09 | 32.08 | 31.4¢ | | 15 | 0.050 | 30.87 | 30.36 | 29.88 | 29.39 | 28.89 | 28.36 | 27.90 | | 20 | 0.070 | 28.31 | 27.84 | 27.41 | 26.96 | 26.51 | 26.03 | 25.59 | | 25 | 0.091 | 27.08 | 26. 64 | 26.22 | 25.79 | 25.36 | 24.91 | 24.49 | | 30 | 0.114 | 26.41 | 25.98 | 25.56 | 25.16 | 24.74 | 24.29 | 23.88 | | 40 | 0.167 | 25.68 | 25.26 | 24.88 | 24.51 | 24.09 | 23.69 | 23.32 | | 50 | 0.231 | 25.18 | 24.80 | 24.42 | 24.02 | 23.64 | 23.24 | 22.86 | | 60 | 0.310 | 24.89 | 24.49 | 24.11 | 23.73 | 23.33 | 22.92 | 22.54 | | 70 | 0.412 | 24.47 | 24.08 | 23.69 | 23.31 | 22.93 | 22.54 | 22.14 | | 80 | 0.545 | 24.23 | 23.86 | 23.48 | 23.09 | 22.68 | 22.28 | 21.91 | | 90 | 0.730 | 23.98 | 23.59 | 23.21 | 22.84 | 22.44 | 22.04 | 21.66 | | 100 | 1.000 | 23.69 | 23.28 | 22.89 | 22.51 | 22.11 | 21.69 | 21.31 | Table 4. Surface Tension of 2-Propanol (1) + Water (2) | | | σ/(mN·m⁻²) at t/°C | | | | | | | |--------|------------|--------------------|-------|-------|-------|-------|-------|-------| | шавв % | x 1 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | 0 | 0.000 | 72.75 | 72.01 | 71.21 | 70.42 | 69.52 | 68.84 | 67.92 | | 5 | 0.016 | 50.32 | 49.58 | 48.88 | 48.16 | 47.37 | 46.66 | 45.82 | | 10 | 0.032 | 41.21 | 40.42 | 39.73 | 39.06 | 38.43 | 37.78 | 37.04 | | 15 | 0.050 | 35.27 | 34.63 | 34.01 | 33.38 | 32.76 | 32.13 | 31.51 | | 20 | 0.070 | 31.16 | 30.57 | 29.98 | 29.37 | 28.79 | 28.18 | 27.59 | | 25 | 0.091 | 28.88 | 28.28 | 27.71 | 27.14 | 26.58 | 26.04 | 25.47 | | 30 | 0.114 | 27.38 | 26.82 | 26.26 | 25.73 | 25.18 | 24.66 | 24.11 | | 40 | 0.167 | 25.81 | 25.27 | 24.74 | 24.23 | 23.72 | 23.21 | 22.69 | | 50 | 0.231 | 24.78 | 24.26 | 23.76 | 23.27 | 22.78 | 22.29 | 21.81 | | 60 | 0.310 | 24.05 | 23.51 | 22.97 | 22.54 | 22.03 | 21.52 | 21.01 | | 70 | 0.412 | 23.17 | 22.68 | 22.18 | 21.71 | 21.22 | 20.76 | 20.28 | | 80 | 0.545 | 22.62 | 22.14 | 21.66 | 21.18 | 20.71 | 20.23 | 19.78 | | 90 | 0.730 | 22.21 | 21.69 | 21.18 | 20.66 | 20.16 | 19.74 | 19.23 | | 100 | 1.000 | 21.74 | 21.22 | 20.72 | 20.23 | 19.71 | 19.21 | 18.69 | deviations of less than 0.3% from the desired concentrations, which are indicated in Tables 1-4 as mole fraction. Surface tension was determined at 5 °C intervals between 20 and 50 °C, using a Prolabo tensiometer, which employs the Wilhelmy plate principle (Lin et al., 1990; Bogaert et al., 1980), thermostated with a precision of ± 0.1 °C. Values shown below are averages of 5-10 messurements; maximum deviations from the average were always less than 0.4%. # Results and Discussion Tables 1-4 list the measured surface tensions of methanol + water, ethanol + water, 1-propanol + water, and 2-propanol + water of various concentrations at each temperature. In all the systems studied surface tension, o, decreased with increasing temperature for any given mole fraction of alcohol. The surface tensions of the pure components can be correlated with temperature by fitting 0021-9568/95/1740-0611\$09,00/0 © 1995 American Chemical Society Figure 1. Surface tension as a function of temperature: □, water, ○, 5 mass % ethanol; ■, 10 mass % ethanol; ◇, 20 mass % ethanol; △, 50 mass % ethanol; ▽, 80 mass % ethanol; ■, 100 mass % ethanol; —, eq 1. Figure 2. Dimensionless surface tension o* plotted against the mole fraction of alcohol: ⋄, methanol 20 °C; ♠, methanol, 50 °C; ♠, ethanol, 20 °C; ♠, ethanol, 50 °C; ♥, I-propanol, 20 °C; ♠, 1-propanol, 50 °C; □, 2-propanol, 20 °C; ▼, 2-propanol, 50 °C. the following linear expression (Jasper, 1972): $$g/(mN \cdot m^{-1}) = K_1 - K_2(t/^{\circ}C)$$ (1) Equation I also fitted the data of Tables 1-4 for each concentration, with deviations of less than 1%. Figure 1 Figure 3. Fitted parameter a (eq 2) as a function of temperature: \blacksquare , methanol; \blacktriangle , ethanol; \spadesuit , 1-propanol; \blacktriangledown , 2-propanol. Figure 4. Fitted parameter b (eq 2) as a function of temperature: \blacksquare , methanol; \blacktriangle , ethanol; \bullet , 1-propanol; \blacktriangledown , 2-propanol. shows the results for ethanol + water as an example. The fitted values of K_1 and K_2 are listed in Table 5. For a given temperature, the surface tension of mixtures studied in this paper decreased as the alcohol concentration increased. This trend was nonlinear, the change in surface tension caused by a given change in alcohol concentration being larger at low concentrations than at high concentraFigrathe expt 50° Aq: con me etł L-ŗ **2**-ŗ tic to te *: σ / (m N · m·¹) 50 30 10 L 0 0.2 Figure 5. Surface tension of methanol + water plotted against the mole fraction of methanol: □, exptl, 20 °C; ¬, calcd, 20 °C; △, exptl, 30 °C; ···, 30 °C; ¬, exptl, 40 °C; -··, calcd, 40 °C; ♠, exptl, 50 °C; ¬, calcd, 50 °C. 0.4 0.6 0.6 $\mathbf{x_i}$ Table 5. Surface Tension Parameters K_1 and K_2 for Aqueous Organic Mixtures | organic
component | _ x ₁ | K ₁ | K_2 | <i>x</i> ₁ | <u>K</u> 1 | K_2 | |----------------------|------------------|----------------|--------|-----------------------|-----------------|--------| | methanol | 0.000 | 76.0114 | 0.1609 | 0.273 | 39.3594 | 0.1149 | | | 0.029 | 66.6950 | 0.1584 | 0.360 | 35.4515 | 0.1041 | | | 0.059 | 59.7657 | 0.1457 | 0.458 | 32.2614 | 0.0963 | | | 0.090 | 54.6635 | 0.1407 | 0.568 | 29.8386 | 0.0938 | | | 0.123 | 50.6179 | 0.1379 | 0.692 | 27.8830 | 0.0926 | | | 0.158 | 47.0057 | 0.1289 | 0.835 | 26.2241 | 0.0921 | | | 0.194 | 44.2404 | 0.1276 | 1.000 | 24.7789 | 0.0918 | | ethanol | 0.000 | 76.0114 | 0.1609 | 0.207 | 32.5586 | 0.0949 | | | 0.020 | 59.2521 | 0.1407 | 0.281 | 30.2507 | 0.0899 | | | 0.042 | 50.7436 | 0.1290 | 0.370 | 28.4139 | 0.0861 | | | 0.065 | 45.2079 | 0.1241 | 0.477 | 27.1571 | 0.0849 | | | 0.089 | 40.8207 | 0.1139 | 0.610 | 25.9242 | 0.0834 | | | 0.115 | 38.2868 | 0.1106 | 0.779 | 24.8225 | 0.0824 | | | 0.114 | 35.6229 | 0.1054 | 1.000 | 23.8993 | 0.0819 | | 1-propanol | 0.000 | 76.0114 | 0.1609 | 0.167 | 27.4226 | 0.0831 | | | 0.016 | 45.1418 | 0.1319 | 0.231 | 26.8879 | 0.0821 | | | 0.032 | 37.0182 | 0.1092 | 0.310 | 26.5612 | 0.0812 | | | 0.050 | 32.8536 | 0.0993 | 0.412 | 26.1232 | 0.0804 | | | 0.070 | 30.1200 | 0.0906 | 0.545 | 25.8657 | 0.0798 | | | 0.091 | 28.8068 | 0.0864 | 0.730 | 25.5904 | 0.0794 | | | 0.114 | 28.0933 | 0.0844 | 1.000 | 25.2721 | 0.0791 | | 2-propanol | 0.000 | 76.0114 | 0.1609 | 0.167 | 27.8879 | 0.1039 | | | 0.016 | 53.7768 | 0.1469 | 0.231 | 26.8821 | 0.1024 | | | 0.032 | 44.1600 | 0.1314 | 0.310 | 26 .0786 | 0.1014 | | | 0.050 | 37.7668 | 0.1252 | 0.412 | 25.2489 | 0.1005 | | | 0.070 | 33.5471 | 0.1191 | 0.545 | 24.6712 | 0.0998 | | | 0.091 | 31.1171 | 0.1131 | 0.730 | 24.1807 | 0.0998 | | | 0.114 | 29.5368 | 0.1086 | 1.000 | 23.6891 | 0.0989 | | | | | | | | | tions. Fitting the equation $$\sigma^* = \frac{\sigma_{\rm w} - \sigma}{\sigma_{\rm w} - \sigma_{\rm o}} = \frac{1 + ax_2}{1 - bx_2} x_1 \tag{2}$$ to the data for each solute (where $\sigma_{\rm w}$ and $\sigma_{\rm o}$ are the surface tensions of pure water and pure alcohol, respectively, and x_1 and x_2 are the mole fractions of alcohol and water) yielded $\sigma^* = x_1$ curves like those shown in Figure 2 for Figure 6. Surface tension of 2-propanol + water against the mole fraction of 2-propanol: \blacksquare , Hoke et al., 1991, 25 °C; \blacktriangle , Hoke et al., 1991, 40 °C; \triangledown , Hoke et al., 1991, 50 °C; \bigcirc , Cheong et al., 1987, 25 °C; \frown , eq 2, 25 °C; \frown , eq 2, 40 °C; \frown , eq 2, 50 °C. Figure 7. Excess surface tension σ^E as a function of the mole fraction of alcohol: □, methanol, 20 °C; ◆, methanol, 50 °C; △, ethanol, 20 °C; ●, ethanol, 50 °C; ○, 1-propanol, 20 °C; ▼, 1-propanol, 50 °C; — calcd from eqs 2 and 3. temperatures of 20 and 50 °C. The dimensionless surface tension σ^* can be considered as independent of temperature over most of the concentration range. The values of the fitted parameters a and b in eq 2 are linear functions of temperature for each alcohol (see Figures 3 and 4). Figure 5 shows, by way of example, the measured surface tensions of methanol + water in comparison with those calculated by means of eq 2. The deviations are less than 3% in all such plots. Experimental values obtained by other researchers cannot be directly compared with the values reported in this paper because of differences in the concentrations used. They can, however, be compared with values predicted by eq 2. In the previous reports considered (for methanol + water at 25 °C (Cheong and Carr, 1987), ethanol + water at 25 °C (Ernst et al., 1936), 1-propanol + water at 20, 30, 40, and 50 °C (Martin et al., 1983), and 2-propanol + water at 25 °C (Cheong and Carr, 1987; Hoke et al., 1991) and at 30, 40, and 50 °C (Hoke et al., 1991)), 92% of the values deviate by less than 6% from the predictions of eq 2. The results for 2-propanol + water are shown as an example in Figure 6. The sensitivity of the surface tension of these systems to the changes in concentration in the low alcohol concentration region reflects the nonideal character of these mixtures. The deviation from ideal behavior can be quantified by the excess surface tension $a^{\rm E}$, defined by $$\sigma^{E} = \sigma - (\sigma_{w} x_{w} + \sigma_{\sigma} x_{o}) \tag{3}$$ Plotting $\sigma^{\rm E}$ against the mole fraction of organic component (Figure 7 shows typical plots) shows that deviation from ideality increases with the length of the organic molecule and decreases with rising temperature: ### Literature Cited - Bogaert, R.; Joos, P. Diffusion-Controlled Adsorption Kinetics for a Mixture of Surface Active Agents at The Solution-Air Interface. J. Phys. Chem. 1980, 84, 190-194. - Cheong, W. J.; Carr, P. W. The Surface Tension of Mixtures of Methanol, Acetonitrile, Tetrahydrofuran, Isopropanol, Tertiary Butanol and Dimethylsulfoxide with Water at 25 °C. J. Liq. Chromatogr. 1987, 10, 561-581. - Ernst, R. C.; Watkins, C. H.; Ruwe, H. H. The Physical Properties of The Ternary System Ethyl Alcohol-Glycerin-Water. J. Phys. Chem. 1936, 40, 627-635. - Hoke, B. C.; Chen, J. C. Binary Aqueous-Organic Surface Tension Temperature Dependence. J. Chem. Eng. Data 1991, 36, 322-326. - Jasper, J. J. Surface Tension of Pure Liquid Compounds. J. Phys. Chem. Ref. Data 1972, 1, 841-1009. - Lin, S.; McKeigue, K.; Maldarelli, C. Diffusion-Controled Surfactant Adsorption Studied by Pendant Drop Digitalization. AIChE J. 1990, 36, 1785-1793. - Martín, A.; Roselló, A.; Rodríguez, J. M.; Hormigo, A. Estimation of Surface Tensions of Mixtures at Their Boiling Point. *Ing. Quim.* 1983, 166, 127-132. - Vázquez, G.; Antorrena, G.; Navaza, J. M. Estimation of The Turbulence Induced by The Marangoni Effect at a Gas-Liquid Interface. Int. Chem. Eng. 1990, 30, 228-235. Received for review September 23, 1994. Accepted January 10, 1995.* This work was partially financed by the Yenta de Celleia (Spain) (Grant XUGA 20909 B94). ## JE940199T Abstract published in Advance ACS Abstracts, March 1, 1995. D: Or 1-7 Rc Ιτ $d\iota$ cc ac p: re 15 e! A ìr. (E S a e. a: fe \mathbf{N} o a work for In