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Summary� This paper describes the use of various symmetry features� including

periodic boundary conditions� mirror boundaries� and rotational symmetry� in the

Evolver� As a test case� we use these features to study foams� in particular the equal�

volume foams of Kelvin and Weaire�Phelan� To compute the shape and energy of

one of these compound surfaces� it is most e�cient to work with only the smallest

possible fundamental domain�

�� Introduction

The Surface Evolver ��� is a software package� for interactive study of curves
and surfaces shaped by energy minimization� In its most basic mode� the
energy in question is surface tension� and the resulting shapes are minimal
�or constant�mean�curvature� surfaces� mathematical models of soap �lms
and soap bubbles� The Evolver works with triangulated surfaces� and can
easily handle those with complicated topology� like the triple junctions and
Plateau singularities found in real soap �lms�

The Evolver has been extended to deal with many other energies� includ�
ing physical terms like gravity� and also mathematical energies like the elastic
bending energy of Willmore surfaces �	� and various M
obius�invariant knot
energies ����

Here we will discuss extensions in a di�erent direction� allowing the
Evolver to compute a symmetric surface using only a single fundamental
domain� For instance� for a triply periodic surface� we can look at a fun�
damental domain for the lattice translations� imposing periodic boundary
conditions� In fact� we prefer to think of describing a surface in the quotient
torus� which is essentially equivalent�

� Available at the URL http���www�geom�umn�edu�software�locate�evolver� �
Our examples may require version ����w or later� run with the �q option�
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Some further symmetries can also be modeled easily� Any minimal sur�
face with a straight�line boundary can automatically be extended� by ���

rotation around this line� to a surface with two�fold symmetry� Similarly� a
minimal surface with a free boundary curve in a plane can be extended by
mirror re�ection� Thus� surfaces with mirror symmetry or two�fold rotation
symmetry can be modeled naturally in the Evolver simply by one fundamen�
tal piece with boundaries in mirror planes or along rotation lines� For mirror
planes� the Evolver will automatically� by area�minimization� give a surface
meeting this plane perpendicularly� It can also deal with a soap��lm triple
junction where one sheet is in the mirror plane and the others meet it at ���

angles�
For more general symmetries� we use the Evolver�s general purpose

symmetry�group feature� the user can write code to deal with any group�
This has been used in the past to try to model periodic surfaces in hyper�
bolic space�� There are� however� certain special di�culties when the group
in question does not act freely� We have now overcome these problems� and
have implemented the group of rotations of arbitrary order about a single
axis� as well as the cubic point group� as Evolver symmetry groups�

As an example illustrating all these symmetry features� we will look at two
foams� or partitions of space into cells with �locally� minimal interface area�
and see how to compute them using successively more and more symmetry
�and thus smaller fundamental domains�� Our newly implemented rotational
symmetries will also be useful for a minimax sphere eversion ��� where a
halfway surface with rotational symmetry �but no mirrors� is evolved to min�
imize its elastic bending energy�

�� The foams of Kelvin and Weaire�Phelan

Lord Kelvin ��� posed in ��� the problem of partitioning space into equal�
volume cells� while using the least interface area� The solution will be a foam�
like an in�nite cluster of soap bubbles� Kelvin�s proposed solution �Fig� ���
was a relaxation of the truncated octahedra which tile space in a body�
centered cubic lattice� Weaire and Phelan ��� discovered in ��	 a new equal�
volume foam �Fig� ����� Using the Evolver� they concluded numerically that
it used less area than Kelvin�s foam� and thus is a new candidate for the
optimal partition�

Kusner and Sullivan ��� discuss the construction and symmetries of both
of these foams� and outline a mathematical proof that in fact Weaire�Phelan
does beat Kelvin� However� neither foam can be described by explicit formu�
las� and we do not even know an existence proof for Weaire�Phelan� Thus�
it is still important to be able to use the Evolver to e�ciently calculate ap�
proximations to both these foams�

� See the �le khyp�c in the Evolver source code�
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Fig� ���� The Kelvin foam has congruent cells tiling space in a bcc lattice� Here
we see two cells from a cubic torus� each replicated eight times in a �� �� � array�
The original polyhedral cells �left	 will relax to a foam �right	 satisfying the Plateau
rules� with somewhat lower area� The Evolver divides initial polygons into triangles
�left	
 the new edges �diagonals	 drawn are exactly the two�fold axes of symmetry
of the foam � note that they continue in in�nite straight lines square�to�square or
hexagon�to�hexagon� The relaxed foam �right	 has a much �ner triangulation� but
only the triple junctions are drawn� All the symmetries are still present�

Fig� ���� Here we see a relaxed Weaire�Phelan foam� These eight cells �two dodec�
ahedra and six ���hedra	 �ll space when replicated in a cubic lattice� In front at
the upper right is a dodecahedron
 the other visible cells are ���hedra� which occur
in columns along the three coordinate directions� �For instance� the two cells in the
back right are in a vertical column� and the two at the bottom left in a horizontal
column�	 Each ���hedron has two opposite� parallel hexagonal faces �which separate
cells within each of these columns	 and twelve pentagonal faces�
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Although all cells in a given foam will have equal volumes� we may want
to compare di�erent foams with di�erent choices for this volume� so we de�ne
the scale�invariant cost of a foam to be � �� A��V �� where V is the volume
of each cell� and A is the average interface area per cell �which is half the
surface area of a typical cell� since interfaces are shared�� This cost is what
we will ask the Evolver to report� while it minimizes the area� Note that it
is important to constrain the cell volumes to be equal� as there are certainly
more e�cient packings of cells of varying sizes �though it is not even clear
how to properly measure e�ciency then��

All cells in Kelvin�s foam are congruent� so they have equal pressure�
and the interfaces are minimal surfaces despite the volume constraints� The
Weaire�Phelan foam� on the other hand� uses two shapes of cells �dodeca�
hedra� and 	�hedra of a particular type�� The pressures in these cells are
di�erent� so that the interfaces between them have nonzero constant mean
curvature� Of course� in both cases� the cells in the foams meet according to
Plateau�s rules for soap bubbles� along each singular line� three cells meet at
��� angles� and at each vertex� four cells come together tetrahedrally�

As discussed in ���� the cell combinatorics implied by these rules for foams
are the same as those found in generic Voronoi partitions� �Given a list
of points� called sites� in space� we partition space into the corresponding
Voronoi cells by allocating each other point in space to the cell of its nearest
site�� Thus it is not surprising that both foams are relaxations of Voronoi
partitions for simple point sets� Starting with sites in a body�centered cu�
bic �bcc� lattice� the Voronoi cells are the truncated octahedra which relax
to the Kelvin foam� If we use the bcc lattice points together with half the
vertices of Kelvin as our Voronoi sites� we obtain a partition which relaxes
to Weaire�Phelan� These partitions will give our �rst Evolver models of the
foams�

�� Triply periodic foams in the Evolver

In general� surfaces are presented to the Evolver in a data�le which lists �rst
the vertices with their coordinates in space� then the edges �which connect
pairs of vertices�� and �nally the faces �speci�ed by the rings of oriented edges
around their boundaries�� Optionally� bodies with �xed or varying volume can
be speci�ed� each given by the set of oriented faces enclosing it�

To implement a triply periodic surface or foam in the Evolver� we use the
torus mode of the program� We specify three periods or vectors generating
a lattice� and the surface then lives in the quotient torus of R� by this lat�
tice� Vertices are free to move throughout the torus� and are not restricted to
any particular fundamental domain� �One could imagine other models� where
a fundamental domain would be �xed� Then certain vertices would be con�
strained to the boundary� these would be replicated on the opposite boundary
to give periodic conditions� But such a scheme is needlessly restrictive��
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For each edge in torus mode� we must specify a wrap value� which tells
which way around the torus the edge goes� or how it crosses between fun�
damental domains when lifted to R�� In the data�le� the wrap is given as a
triple of symbols �� �� or �� representing the sum of �� �� or  times the
three period vectors� respectively� If an edge connects vertices a and b �as
listed with coordinates in R�� and its wrap vector is given as w� then this
edge in the torus is one that has a lift connecting a to b�w in R�� Faces and
bodies are speci�ed as usual in the data�le� with the requirement that the
net wrap around the boundary of any face will be zero�

An Evolver data�le� for the Kelvin foam is shown in Fig� ��� This foam
lives in the cubic torus R��	Z�� The twelve vertices given are those from two
opposite hexagonal faces �numbers �� and ��� of the Voronoi cell around the
origin� �Of course all other vertices of the foam are lattice translates of these��
Those two faces can be speci�ed with edges of wrap zero� but the other faces
all involve nonzero wraps� Here� body � is the cell around the origin� while
the other body is its translate by ��� �� ���

When in torus mode� bodies are speci�ed by oriented faces with no no�
tion of their relative positions in the torus� Because of this� the Evolver�s
computation of a body volume might be o� by some multiple of �� the total
torus volume� �Note for instance that the list of faces for body � in Fig� ��
includes �� and ���� These are in fact opposite square faces of the cell� at
di�erent heights and should thus contribute di�erently to the volume� ob�
tained by integrating z dx dy� But the Evolver does not know their relative
positions� and we could just as well have left these two faces o� the list�� To
avoid these errors it is important to give the Evolver the approximate start�
ing value for each body volume� as we do� However� the end of this data�le
tells the Evolver to un�x one of the volumes� This is because� in a torus �lled
with bodies of �xed volumes� these volume constraints are in fact linearly
dependent� Here the two constraints are equivalent� and we must keep one�
removing the other�

If we run the Evolver on this data�le� we see initially the foam on the
left in Fig� ��� with cost � � ������� The command transform�expr

	abc	 at the end of the data�le tells the Evolver to show eight copies of
the surface� translated by �sums of� the torus period vectors� Even though
the Evolver has� as always� introduced new vertices in the centers of the
hexagons and squares to get a triangulated surface �whose edges are drawn
in the left �gure�� there is no freedom to improve this foam until we re�ne
the triangulation� If we run the commands r
 g ��
 r
 g �� to re�ne and
iterate� we obtain the relaxed foam on the right in Fig� ��� with cost � �
�����	� modeled in the Evolver with slightly over one thousand triangles�

To check that we are now essentially at the minimum energy for this
level of re�nement� we can use the hessian command ��rst turning on the

� This data�le and all the �les described or listed here are available at URL
http���www�geom�umn�edu�

�

sullivan�symfoam� �
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torus periods
4 0 0  0 4 0  0 0 4

vertices
10 1 2 0
11 0 1 2
12 2 0 1
20 1 0 2
21 2 1 0
22 0 2 1
60 -1 0 -2
61 -2 -1 0
62 0 -2 -1
70 -1 -2 0
71 0 -1 -2
72 -2 0 -1

edges
121 12 61 + * *
102 10 62 * + *
110 11 60 * * +
201 20 71 * * +
212 21 72 + * *
220 22 70 * + *
301 10 21 * * *
312 11 22 * * *
320 12 20 * * *
401 20 11 * * *
412 21 12 * * *
420 22 10 * * *
621 62 11 * - -
602 60 12 - * -
610 61 10 - - *
701 70 21 - - *
712 71 22 * - -
720 72 20 - * -
801 60 71 * * *
812 61 72 * * *
820 62 70 * * *
901 70 61 * * *
912 71 62 * * *
920 72 60 * * *

faces

10 121 812 -212 412   color red
11 102 820 -220 420   color green
12 110 801 -201 401   color blue

60 621 312 -712 912   color red
61 602 320 -720 920   color green
62 610 301 -701 901   color blue

20 301 212 720 401 -621 -102
21 312 220 701 412 -602 -110
22 320 201 712 420 -610 -121

70 801 712 220 901 -121 -602
71 812 720 201 912 -102 -610
72 820 701 212 920 -110 -621

30 301 412 320 401 312 420

80 801 912 820 901 812 920

bodies

1 10 11 12 20 21 22 -30 \
  -10 -11 -12 -70 -71 -72 80 volume 32

6 60 61 62 70 71 72 -80 \
  -60 -61 -62 -20 -21 -22 30 volume 32

read

connected;
conj_grad;
optimize 100;

unset body[1] target;
transform_expr "abc";
cost := {
    print (total_area/body_count)^3 /
        (sum(body,volume)/body_count)^2
};

Fig� ���� This Evolver �le describes two cells of the Kelvin foam� which �ll a cubic
torus �R� mod a lattice given by the three period vectors	� The edges are marked
with wrap values
 edge ���� for instance� is wrapped by the �rst period vector� and
thus goes from ��� �� �	 to ������� �	 � ��� �� �	� The square faces are colored red�
green or blue� depending on which coordinate plane they are parallel to� while the
hexagons are left colored white�

The commands at the end of the �le tell the Evolver to display connected bodies
and to use the conjugate gradient optimization method with maximum scale ����
Then we remove the redundant volume constraint for the �rst cell� and ask for the
display of eight copies of the graphics� as in Fig� ���� Finally� the command cost is
de�ned to report the cost � of the foam at any time� Note also that elements whose
identi�cation numbers di�er by  in the �rst digit are translates of each other by
��� �� �	
 this will be used to generate our next data�le�
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torus periods
-2 2 2  2 -2 2  2 2 -2

vertices
10 1 2 0
11 0 1 2
12 2 0 1
20 1 0 2
21 2 1 0
22 0 2 1

edges
121 12 11 - * *
102 10 12 * - *
110 11 10 * * -
201 20 21 * * -
212 21 22 - * *
220 22 20 * - *
301 10 21 * * *
312 11 22 * * *
320 12 20 * * *
401 20 11 * * *
412 21 12 * * *
420 22 10 * * *

faces
10 121 312 -212 412     color red
11 102 320 -220 420     color green
12 110 301 -201 401     color blue

20 301 212 220 401 -121 -102
21 312 220 201 412 -102 -110
22 320 201 212 420 -110 -121

30 301 412 320 401 312 420

bodies
1 10 11 12 20 21 22 -30 \
  -10 -11 -12 -20 -21 -22 30 volume 32

read
connected;
conj_grad; optimize 100;
unset body[1] target;
transform_expr "abc";
cost := {
  print (total_area/body_count)^3 /
      (sum(body,volume)/body_count)^2
};

Fig� ���� This Evolver �le describes one cell of the Kelvin foam� in a bcc torus� It
is essentially just half of the previous cubic data�le� but note the changes in edge
wraps� Edge ��� is still the same edge from ��� �� �	 to ������ �	� for instance� but
it is represented di�erently with the new period vectors�

hessian�normal mode� which ignores tangential motion of vertices�� This
performs one iteration of Newton�s method� converging toward the critical
point� but we see little if any change�

The Hessian commands are also useful for testing stability� with the �le
as it is� we �nd that we are at a local minimum for energy� But we can now
consider removing the volume constraint with unset body��� target� since
the cells have equal pressure� the con�guration will still be an equilibrium�
Now that the two cells in the torus are free to assume di�erent volumes�
hessian reports that the Hessian matrix has one negative eigenvalue� The
saddle command will move in the direction of this lowest eigenvector� and
if we do this we see immediately that one cell is growing at the expense of
the other� without the volume constraint� this foam will collapse� even with
enforcement of the cubic translational symmetry�

Of course� this foam actually has further translational symmetry� by the
body�centered cubic lattice bcc� We have numbered the vertices� edges� and
faces in our original �le so that elements di�ering by the body�centering
translation ��� �� �� have numbers di�ering by � in the �rst digit� We can
implement a simpler Evolver �le for the same foam as in Fig� ���� with half
as many elements� now enforcing the bcc symmetry� Of course� imposing
this symmetry forces all cells to have equal volumes� so we no longer need
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8
0 0 0:1
12 12 12:5
6 0 12:2
-6 0 12:3
12 6 0:4
12 -6 0:6
0 12 6:7
0 12 -6:8

Fig� ���� This input �le phw�v lists the eight Voronoi sites for the Weaire�Phelan
foam� two at the lattice points of bcc and the others at half the vertices of the
Kelvin foam� They are marked as the centers of bodies � through �� To generate
an Evolver �le� we invoke vcs with the options �t d �� �� �� to specify the torus
periods� �s phw�v �c to read in the sites and compute the Voronoi partition� and
�p k phw�fe to print the results in Evolver format�

a volume constraint� �We still list the body to make use of the Evolver�s
connected body display option��

It should be clear that generating input �les� even for such a simple foam
with a single type of cell� can be di�cult to do by hand� In fact� we have
written software� vcs which computes Voronoi partitions in R� or in any
quotient torus� and can format its output as an Evolver �le� To generate an
Evolver �le for the Weaire�Phelan foam� we can use vcs with the input �le of
Fig� ���� the resulting Evolver �le is shown in Fig� ��	� �For didactic purposes
the data�les shown here have been edited by hand� changing for instance the
numbering scheme for vertices��

The Voronoi cells for these sites� computed by vcs and described in
this �le� actually have slightly di�ering volumes� To describe a polyhedral
equal�volume partition in the Weaire�Phelan pattern� we could use weighted
Voronoi cells� We have computed ��� that a weighted Voronoi partition on
these same sites with equal volumes has � � ������� �This is the only equal�
volume polyhedral partition with this symmetry and combinatorics��

Because the current version of vcs does not compute weighted Voronoi
partitions� we start with the ordinary Voronoi partition� and let the Evolver
equalize the volumes� The commands at the end of our data�le set all bodies
to have equal target volumes� After a few steps of iteration� these new con�
straints will be satis�ed� and we get an equal�volume partition� with cost

� � ������� This is less that the cost computed for the weighted Voronoi
partition� because we no longer have planar faces� even though we have not
re�ned the triangulation yet� The Evolver always introduces a new vertex in
the center of each given face� to give a triangulation� and our iteration steps
have moved these vertices into better positions�

If we continue to iterate and re�ne �with g ��
 r
 g ��
 r
 g ���
we end up with the approximation to the Weaire�Phelan foam pictured in
Fig� ���� It has cost � � ��	���� and uses 		� triangles� requiring enough

� Available from URL http���www�geom�umn�edu�
�

sullivan�software� �
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torus
periods
24 0 0
0 24 0
0 0 24

vertices
4   5 5 5
401 5 5 -5
402 5 -5 5
403 5 -5 -5
404 -5 5 5
405 -5 5 -5
406 -5 -5 5
407 -5 -5 -5
6   7 7 7
601 7 7 -7
602 7 -7 7
603 7 -7 -7
604 -7 7 7
605 -7 7 -7
606 -7 -7 7
607 -7 -7 -7
11  0 3.75 7.5
111 0 3.75 -7.5
112 0 -3.75 7.5
113 0 -3.75 -7.5
12  7.5 0 3.75
121 -7.5 0 3.75
122 7.5 0 -3.75
123 -7.5 0 -3.75
13  3.75 7.5 0
131 3.75 -7.5 0
132 -3.75 7.5 0
133 -3.75 -7.5 0
17  12 4.5 8.25
171 12 4.5 -8.25
172 12 -4.5 8.25
173 12 -4.5 -8.25
18  8.25 12 4.5
181 -8.25 12 4.5
182 8.25 12 -4.5
183 -8.25 12 -4.5
19  4.5 8.25 12
191 4.5 -8.25 12
192 -4.5 8.25 12
193 -4.5 -8.25 12
34  6 12 0
341 -6 12 0
35  0 6 12
351 0 -6 12
36  12 0 6
361 12 0 -6

edges
1 406 121 * * *
2 121 123 * * *
3 121 36 - * *
...
90 19 191 * + *
91 603 173 * * *
92 123 361 - * *

faces
1 1 2 5 10 19 
2 1 3 7 13 24 
...
53 87 85 13 -76 -88 
54 72 85 25 -91 -86 

bodies
1 1 -3 -4 -5 -9 10 11 -12 -15 \
    -23 24 -32 volume 1687.5
2 15 -28 29 30 31 45 -46 -24 -25 \
    47 7 54 -41 -42 volume 1741.5
3 -2 5 -6 -7 13 -14 -16 -17 -18 \
    -29 19 4 34 -37 volume 1741.5
4 23 -31 -39 -40 41 -48 44 -50 \
    51 6 17 21 8 3 volume 1741.5
5 -47 -49 50 -43 16 53 -54 -51 \
    -52 33 18 -20 volume 1687.5
6 -26 -27 32 42 -44 -45 48 52 -34 \
    -53 36 2 -1 38 volume 1741.5
7 9 14 -21 22 -30 -33 -38 12 27 \
    40 -35 -13 28 49 volume 1741.5
8 -8 -10 -19 20 -22 25 35 -36 37 \
    39 43 46 -11 26 volume 1741.5

read
set facet color 0
set body[2].facet color color+blue
set body[3].facet color color+blue where
color < blue

set body[4].facet color color+green
set body[6].facet color color+green where
color < green

set body[7].facet color color+red
set body[8].facet color color+red where
color < red

set body[1].facet color color+darkgray
set body[5].facet color color+darkgray
vol := sum(body,volume)/body_count;
connected; conj_grad; optimize 100;
set body target vol; unset body[1] target;
cost := {print
    (total_area/body_count)^3 / vol^2 };

Fig� ���� This Evolver �le describes the Weaire�Phelan foam in a cubic lattice� The
full listings of edges and faces are not shown� This �le was automatically generated�
but we have renumbered the vertices by hand to show some of the symmetry� The
commands at the end color the faces based on which bodies they separate� and
equalize the targets for the volume constraints�
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Fig� ���� This piece of the Kelvin foam �left	 is bounded by six axes of two�fold
rotational symmetry� Extending it by these symmetries would recreate the whole
foam� The piece we see is described by the data�le in Fig� ����left	� and consists of
one quarter of a square �at the bottom	 plus two sixths of hexagons
 it is the unit
obtained by cutting the Kelvin foam along the diagonals drawn in Fig� ����left	�
which are �xed axes of symmetry� This unit still has two perpendicular mirror
planes� and thus can be generated by a piece �right	 one quarter as big� modeled
with half density for the face in the mirror plane�

memory to start to slow down most computer systems� To get better approx�
imations� we will implement some further symmetries of the foam�

�� Using two�fold symmetries of minimal surfaces for

the Kelvin foam

Whenever a minimal surface has a straight line boundary� it can be extended
across this line by ��� rotation� Thus� a minimal surface with two�fold ro�
tational symmetries can be modeled by using just a piece bounded by the
symmetry lines� If this piece is then rotated by the symmetry motions� the
rest of the surface will be recovered�

For instance� consider the Kelvin foam of Fig� ��� The diagonals of each
face� be it a square or hexagon� are axes of two�fold symmetry for the entire
structure� If we cut the foam along these axes� we get congruent pieces as in
Fig� 	��left�� each consisting of three sheets� meeting along a triple junction�
�Each piece in fact consists exactly of those parts of the entire foam surface
closer to this particular triple�junction arc than to any other�� An Evolver
data�le for this symmetric piece is shown in Fig� 	���left�� It is easy to take
this piece� repeatedly iterate and re�ne� and get a surface using under one
thousand triangles with cost � � ������� a noticeably better approximation
than we got with our �rst Kelvin data�le�

Whenever a minimal surface has a free boundary curve in a plane� it
will meet this plane perpendicularly� and can be extended across the plane
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vertices
1   0 1 0
2   1 0 0
10  1 1 1
20  1 1 -1
30  0 0 0

edges
1   1 2
11 10 1
12 10 2
21 20 1
22 20 2
31 30 1
32 30 2

faces
1 11 1 -12
2 21 1 -22
3 31 1 -32

read

conj_grad;

fix vertex;
fix edge where
    valence<2;

cost := {print
 (3*total_area)^3/16};

constraint 1 formula x=y

vertices
1  .5 .5 0
2   1 0 0
10  1 1 1
20  1 1 -1
30  0 0 0

edges
1   1 2
11 10 1
12 10 2
21 20 1
22 20 2
31 30 1
32 30 2

faces
1 11 1 -12
2 21 1 -22
3 31 1 -32

read
conj_grad;
set vertex constraint 1 where x=y;
set edge ee constraint 1 where
  min(ee.vertex, on_constraint 1);
fix edge where
  not on_constraint 1 and valence<2;
foreach edge ee where fixed do
  fix ee.vertex;
cost := {print (6*total_area)^3/16}

Fig� ���� This listing shows two data�les for Kelvin which use two�fold symmetry�
On the left� we describe the piece of the foam shown in Fig� ����left	 by �xing the
bounding edges along two�fold axes of symmetry� This unit consists of one quarter
of a square �face 		 and two sixths of hexagons�

There is a mirror symmetry in the plane x � y� so we can instead describe
�right	 just half of this piece� using the constraint � for the edges in the mirror
plane� We could mark vertices and edges to be �xed or constrained when listing
them in the data�le� but in both �les we choose instead to use the Evolver query
language to select the appropriate ones� We constrain all the vertices in the mirror
plane to stay there� and also constrain any edge between two such vertices� Any
remaining boundary edges are �xed� as are their vertices� Note that� in both cases�
we de�ne new cost commands to properly account for the area of a whole cell�
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by a mirror symmetry� For instance� the piece of Kelvin we have just seen
has a mirror plane perpendicular to all three sheets� If we invoke this mirror
symmetry� we get the data�le shown in Fig� 	���right�� Some of the edges
of this piece are now not �xed �on rotation axes� but merely constrained to
the mirror plane �so that when they are re�ned� the new vertices and edges
created will inherit this constraint��

When dealing with compound soap �lms or foams with mirror symmetry�
we must also consider the case when one piece of the surface lies in the
mirror plane� bounded by triple junction curves where other sheets come
in symmetrically at ��� angles� To model this� we endow the sheet in the
mirror plane with half the density of the other sheets� �It lives in a mirror
boundary of the quotient orbifold of R� modulo the symmetry group� and
thus counts half�� Minimizing the total energy then will automatically result
in the correct ��� contact angle� In the data�le of Fig� 	�� adjusted our cost
function to account for the fact that the energy is now di�erent from simply
the total�area� and is half that of the previous data�le� This piece no longer
has any symmetry� so this is a minimal fundamental domain for calculation
of the Kelvin foam�

The Evolver has nice features for displaying several copies of a symmetric
object� For data�les in torus mode� there are automatically three generators
a� b and c� set up to translate the view by the torus period vectors �as used in
the example of Fig� ���� Then the command transform�expr can be used to
control the display of one or more fundamental units� The argument 	abc	�
for instance� represents all possible ordered subproducts of this generator
string� so we see a ����� array� With 	�ab�c	� de�ned to equal 	aaabbc	�
we would see instead a 	� �� � array� Of course� the lattice translations in
torus mode always give a commutative group� so the order of generators in
such an expression is irrelevant�

In Fig� 	��� we see that several generators are de�ned explicitly at the
top� as 	 � 	 matrices� As is usual in computer graphics� these matrices
are used projectively� so that in practice� the upper�left � � � block gives a
rotation of R�� while the last column gives any translation� Here our four
matrices �automatically assigned the names a through d� represent mirror
re�ections in constraints � and �� and rotations about edges �� and ��� in that
order� For example we see that the fourth line represents the transformation
�x� y� z� �� ���x� z� y�� which is the desired ��� rotation about the edge from
�� �� �� to �� � �� The command rotpiece sets the transform�expr to be
	ab	� which gives four copies of the surface� transformed by the two mirror
symmetries �which commute�� More complicated expressions will generate
larger pieces of the complete foam� as in Fig� 	�	� where we see a complete
square and hexagon� The sqrot command uses expression 	�ca�b	� which
is equivalent to 	cacab	� Reading from the right� this tells us to �rst re�ect in
the mirror b� then repeatedly apply the mirror a and the rotation c until the
square is unfolded� There is no need to apply b again at all� as this re�ection
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view_transform_generators 4 //read across, one per line
0 1 0 0   1 0 0 0   0 0 1 0   0 0 0 1
1 0 0 0   0 1 0 0   0 0 -1 0  0 0 0 1
1 0 0 0   0 -1 0 0  0 0 -1 0  0 0 0 1
-1 0 0 2  0 0 1 0   0 1 0 0   0 0 0 1

constraint 1 formula x=y
constraint 2 formula z=0

vertices
1  .5 .5 0
2   1 0 0
10  1 1 1
30  0 0 0

edges
1   1 2
11 10 1
12 10 2
31 30 1
32 30 2

faces
1 11 1 -12
3 31 1 -32

read
conj_grad; hessian_normal;
set vertex constraint 1 where x=y;
set vertex constraint 2 where z=0;
set edge ee constraint 1 where min(ee.vertex, on_constraint 1);
set edge ee constraint 2 where min(ee.vertex, on_constraint 2);
foreach facet ff where min(ff.edge, on_constraint 2) do
    {set ff constraint 2; set ff density 1/2};
fix edge where not on_constraint 1 and valence<2;
foreach edge ee where fixed do fix ee.vertex;
cost := {print (12*total_energy)^3/16}
rotpiece := {transform_expr "ab"};
sqrot := {transform_expr "2(ca)b"};
hexrot := {transform_expr "3(da)b"};

Fig� ���� This Evolver data�le describes a minimal fundamental unit for the Kelvin
foam� bounded by mirror planes and axes of two�fold rotation� We see here a subset
of the vertices and edges from our previous data�le� Again we use commands at
the end of the data�le to constrain the appropriate elements� Note that it is face
number 	 which will be constrained to the mirror boundary z � �� It is set to have
half the density of the other face� leading to the correct contact�angle behavior�

Displaying just one copy of the data in this �le gives Fig� ����right	� The
various view transforms can be used to create graphics of larger pieces of the foam
by replicating this unit� as shown in Fig� ���� The four �� � matrices �each listed
across one line at the top of the data�le	 represent mirror re�ections in the two
constraints and two�fold rotations about the two �xed edges� in that order�
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Fig� ���� Using view transformations� we can use the fundamental unit from the
data�le of Fig� ��� to display larger pieces of the Kelvin foam� The command
rotpiece would reproduce the unit of Fig� ����left	� Here we see even larger pieces�
shown in the same orientation� If we use sqrot� then we see �left	 a complete square�
together with the adjacent pieces of hexagons
 the previous unit appears at the top�
If on the other hand� we use hexrot� then we see �right	 a complete hexagon� to�
gether with the adjacent pieces of hexagons and squares
 the previous unit appears
at the lower right�

in the plane of the square commutes with the other generators� Similarly�
hexrot uses the rotation d in place of c to unwrap the hexagon� In these
examples� of course� the order of the generators is important�

�� Other rotational symmetries and the Weaire�Phelan

foam

TheWeaire�Phelan foam also has several symmetries beyond the cubic trans�
lation� For instance� a body�centering translation composed with a ��� rota�
tion preserves the foam� since this symmetry has no �xed points� there is a
quotient manifold �smaller than the cubic torus� from which the foam lifts�
However� the Evolver does not have this manifold built in� as it does the
torus mode� so we will instead look �rst at some mirror symmetries� The
vertices listed in Fig� ��	 live in the cubic fundamental domain ���� ��� for
the torus used there� and they have been numbered to show the mirror sym�
metries in the three coordinate planes� The translational symmetries imply
that there are also mirrors in the bounding planes of that cube� Therefore�
we can model the foam by a unit inside a smaller cube �of side �� bounded
by six mirror planes� The data�le� now containing only the vertices from the
original �le with positive coordinates� and not their mirror images� is shown
in Fig� ��� We have in fact also subtracted � from all the coordinates here�
to make the further symmetries more apparent� Fig� ����left� shows this unit�
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constraint 1 formula x=6
constraint 2 formula y=6
constraint 3 formula z=6
constraint 4 formula x = -6
constraint 5 formula y = -6
constraint 6 formula z = -6

#define fvi method facet_vector_integral \
 vector_integrand:
#define fvz fvi q1:0 q2:0 q3:
method_instance volx  fvi q1:x  q2:0  q3:0
method_instance volmx fvi q1:-x q2:0  q3:0
method_instance voly  fvi q1:0  q2:y  q3:0
method_instance volmy fvi q1:0  q2:-y q3:0
method_instance volz  fvz   z
method_instance volmz fvz  -z
method_instance volp  fvz   z-6
method_instance volm  fvz  -z-6

quantity volb1 fixed=432 method volx method volmx
quantity volb2 fixed=432 method voly method volmy
quantity volb3 fixed=432 method volz method volmz
quantity volb4 fixed=216 method volp
quantity volb5 info_only method volm

vertices
4 -1 -1 -1
6  1  1  1
11 -6 -2.25 1.5
12 1.5 -6 -2.25
13 -2.25 1.5 -6
17 6 -1.5 2.25
18 2.25 6 -1.5
19 -1.5 2.25 6
21 1.5 -6 -6
22 -6 1.5 -6
23 -6 -6 1.5
27 -1.5 6 6
28 6 -1.5 6
29 6 6 -1.5
34 0 6 -6
35 -6 0 6
36 6 -6 0
41  6 -6 -6
42 -6 6 -6
43 -6 -6 6
47 -6 6 6
48 6 -6 6
49 6 6 -6

edges
5 4 6
11 11 4
12 12 4
13 13 4
17 17 6
18 18 6
19 19 6
31 11 35
32 12 36
33 13 34
37 36 17
38 34 18
39 35 19
41 21 41
42 22 42
43 23 43
47 27 47
48 28 48
49 29 49
51 41 36
52 42 34
53 43 35
57 47 35
58 48 36
59 49 34
112 11 22
223 22 13
131 13 21
212 21 12
123 12 23
231 23 11
178 17 28
289 28 19
197 19 27
278 27 18
189 18 29
297 29 17

faces
31 -31 -231 43 53 volx
32 -32 -212 41 51 voly
33 -33 -223 42 52 volz
37 37 178 48 58 volx
38 38 189 49 59 voly
39 39 197 47 57 volz

11 123 231 11 -12 volx volm
12 131 212 12 -13 voly volm
13 112 223 13 -11 volz volm
17 178 289 19 -17 volmx volp
18 189 297 17 -18 volmy volp
19 197 278 18 -19 volmz volp

14 -13 33 38 18 -5 volz volmy
15 -11 31 39 19 -5 volx volmz
16 -12 32 37 17 -5 voly volmx

read
set vertex constraint 1 where x=6;
set vertex constraint 2 where y=6;
set vertex constraint 3 where z=6;
set vertex constraint 4 where x = -6;
set vertex constraint 5 where y = -6;
set vertex constraint 6 where z = -6;
ii := 6; while (ii>0) do {
  set edge ee constraint ii where
    min(ee.vertex,on_constraint ii);
  foreach facet ff where
    min(ff.edge,on_constraint ii) do
      {set ff constraint ii; set ff density 1/2;};
  ii := ii-1}
set edge color green where original>100;
set edge color red where original>30 and original<40;
set edge color blue where original=5;
show_expr edge where original>0 and valence>1;
cost := {print (total_energy)^3/1728^2;};

Fig� ���� A data�le for the Weaire�Phelan foam with mirrors� as shown in
Fig� ���left	� Read �rst the two columns at the top� then the two at the bottom�
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Fig� ���� A cube bounded by mirror planes �left	 contains a unit of the
Weaire�Phelan foam� which includes quarters of three ���hedra �like the one at
the top front	� and eighths of two ���hedra �at opposite cube corners	� The edge in
the center of the picture connects corners of the two dodecahedra� and is an axis of
three�fold rotation� a triple junction between the three ���hedra� The lines joining
its midpoint to the opposite vertices of the three attached pentagons are axes of
two�fold symmetry� The faces in the mirror planes are quarters of hexagons �each
separating two ���hedra	� To generate this picture we added bare edges� bounding
the cube� to the data�le of Fig� ��� A unit one sixth as big �right	 accounts for the
rotational symmetries� It includes a quarter of a hexagon� and halves of each kind
of pentagon from the foam� and comes from the upper left corner of the cube�

which includes a quarter of a 	�hedron along each of three edges of the cube�
and an eighth of a dodecahedron at each of two opposite corners�

In the data�le� note that we have a constraint for each of the mirror
planes� the commands at the end automatically constrain vertices� edges and
faces based on which mirrors they lie in� We must take special care now to
compute cell volumes� which are usually integrals over the faces of a closed
body� When a body is bounded partly by planes �like our mirrors� not given as
faces in the data�le� we can most easily compute its volume with an integrand
that evaluates to zero on the missing faces� using our freedom to choose any
two�form with exterior derivative dx dy dz� For instance� the former body �

is the 	�hedron along an edge of the cube in the x direction� It would be
closed o� by faces in mirror planes parallel to the xy� and xz�planes� We
integrate its volume with volx� the form xdy dz� which vanishes along these
missing faces� For body �� one eighth of a dodecahedron� we use volp� the
form �z � �� dx dy� which integrates to zero along all three missing faces�
which are in the mirror planes x � �� y � �� and z � ��

This unit has no further mirrors� but there is rotational symmetry� The
edge joining near corners of the two dodecahedra lies along a body diagonal
of the cube� which is an axis of three�fold rotation� There are also two�fold
rotations interchanging the ends of this same edge� We could make a model
half as big� �xing the three edges of two�fold symmetry as for the Kelvin
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#include "include.h"
#define stdwrap(w) ((((w)<0? -2*(w):(w))+1)%3 - 1)

void xyz_wrap(x,y,wrap)
REAL *x; REAL *y; WRAPTYPE wrap;
{
  memcpy((char*)y,(char*)x,SDIM*sizeof(REAL));
  if (!(wrap = stdwrap(wrap))) return;
  if (wrap==-1) y[0]=x[1], y[1]=x[2], y[2]=x[0];
  else /*wrap 1*/ y[0]=x[2], y[1]=x[0], y[2]=x[1];
}

WRAPTYPE xyz_compose(wrap1,wrap2)
WRAPTYPE wrap1,wrap2;
{ return stdwrap(wrap1 + wrap2); }

WRAPTYPE xyz_inverse(wrap)
WRAPTYPE wrap;
{ return stdwrap(-wrap); }
  
void xyz_form_pullback(x,xform,yform,wrap)
REAL *x; REAL *xform; REAL *yform; WRAPTYPE wrap;
{ xyz_wrap(yform,xform,-wrap); }

Fig� ���� Adding this code to the Evolver source will implement the xyz symmetry
group of three�fold rotation about the ��� �� �	�axis� Elements are represented by
the integers f����g mod �� Included are routines to compose� invert� and apply
these symmetries� and also one to pull back one�forms� The names of these routines
must be entered in the table in registry�c to use the new symmetry�

foam� without using any new symmetry features� The edge along the three�
fold axis is similarly �xed� but because the foam is not cut into three pieces
by this edge� we need to teach the Evolver explicitly about the symmetry� A
data�le using a named symmetry group will have edges marked with wrap

values as in a torus� but these wraps are now integers encoding the elements
of a group� Some symmetry groups are built in to the Evolver� but new ones
can be included if we add routines to the source code to compose and apply
these wrap values�

A simple example is the group of rotations about the �� � ��axis� This
is a cyclic group of order three� which we can represent by integers modulo ��
Code �in C� implementing this group is shown in Fig� ���� The group can be
used to model a cube �Fig� ��	� which will �ow to a spherical bubble� Under
this symmetry� there are four orbits of vertices� four of edges and two of faces�
and these each appear once in the data�le� Note that one edge is described
with a wrap value� meaning that its second vertex has coordinates cycled by
the group element�

This group� unlike the fundamental group in the torus mode� has �xed
points along the axis� and we need to allow a surface to cross this axis�
To implement this� we include a vertex constrained to be on the axis� and
mark it as an axial�point� A surface through this point is then given by
a single wedge�shaped face� replicated by rotation to �ll out a disk around
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symmetric_content
view_transform_generators 1
0 1 0 0  0 0 1 0   1 0 0 0   0 0 0 1
symmetry_group "xyz"
constraint 1 formula x=y
constraint 2 formula y=z
#define axis axial_point constraint 1 2
vertices
1   1  1  1 axis
2  -1  1  1
3  -1 -1  1
4  -1 -1 -1 axis
edges
1   1 2
2   2 3
3   3 2 wrap 1
4   4 3
faces
1   1 2 3 -1
2   4 -2 -3 -4
body
1  1 2 volume 8/3
read
transform_expr "2a"; raw_cells

Fig� ���� Like the �le cube�fe included with the Evolver distribution� this �le rep�
resents an initial cube� which will �ow to a spherical bubble as its area is decreased
with volume �xed� This �le� however� uses the three�fold xyz symmetry�

the axial vertex� This face �like each face in the cube example� will start
with an edge out of the axial vertex� and end with the same edge in opposite
orientation� after a wrap by some group element� Mathematically� we could
think of closing o� the face with an edge from the axial vertex to itself� merely
to undo the net wrap of the face� But the Evolver does not like zero�length
edges� so instead we leave out that edge� with the understanding that a face
can have nonzero net wrap if it starts at an axial point� In this case� it is
required that the �rst edge listed for the face be a positive edge� outward
from the axial point� Listing any other faces with nonzero net wrap will give
errors� but in this one case� the Evolver takes special care to track the wrap
needed to close o� the face�

Note also that we specify symmetric�content� which means that the
volume of a body is computed by integrating not z dx dy over its faces� but
instead the symmetrized version �

�
�xdy dz�y dz dx�z dx dy�� This� integrated

over just one fundamental piece of the surface under our symmetry group�
will give one�third the total volume of the cube� We start with a cube of
total volume �� and �x this volume by telling the Evolver that the volume
computed for the fundamental piece is ����

We can use this same xyz group to implement the Weaire�Phelan foam
with all of its symmetries� as in Fig� ���� This �le contains elements from
the previous data�le �Fig� ���� one selected from each orbit under the sym�



Using Symmetry Features of the Surface Evolver to Study Foams ��

symmetry_group "xyz"

view_transform_generators 2
0 1 0 0    0 0 1 0  1 0 0 0   0 0 0 1
0 -1 0 0  -1 0 0 0  0 0 -1 0  0 0 0 1

constraint 1 formula x=6
constraint 3 formula z=6
constraint 5 formula y = -6
constraint 7 formula x=y
constraint 8 formula x+y=2*z
constraint 9 formula z=0

#define fvi method facet_vector_integral vector_integrand:
method_instance volx  fvi q1:x   q2:0   q3:0
method_instance volmx fvi q1:-x  q2:0   q3:0
method_instance voly  fvi q1:0   q2:y   q3:0
method_instance volp  fvi q1:x-6 q2:y-6 q3:z-6

quantity volb1 info_only method volx method voly method volmx 
quantity volb4 fixed=216 method volp

vertices
5 0 0 0 fixed constraint 7 8 9
6 1 1 1 axial_point constraint 7 8
36 6 -6 0 fixed constraint 1 8 9
17 6 -1.5 2.25 constraint 1
28 6 -1.5 6 constraint 1 3
48 6 -6 6 fixed constraint 1 3 5

edges
48 28 48 constraint 1 3
58 36 48 constraint 1 5
178 17 28 constraint 1 color green
389 17 28 constraint 1 wrap 1 color green
37 36 17 constraint 1 color red
17 6 17
5 6 5 constraint 7 8 color blue
6 5 36 constraint 8 9

faces
37 37 178 48 -58 density .5 constraint 1 volx
15 5 6 37 -17 voly volmx
17 17 178 -389 -17 volmx volp

read
show_expr edge where original>0 and (valence>1 or color=blue)
cost := {print (6*total_energy)^3/1728^2;};
conj_grad; hessian_normal; transform_expr "b2a";

Fig� ���� This data�le implements the Weaire�Phelan foam with full symmetry�
The unit described here is that shown in Fig� ���right	� though the view transfor�
mations and expression will show six copies of the unit� reproducing Fig� ���left	�
The new constraints 
 and � are used to constrain edge � along the three�fold axis
of xyz symmetry� In this unit we see one eighth of a dodecahedron� and one eighth
of a ���hedron� corresponding to bodies � and � of our last data�le� The quantities
volb� and volb� are supposed to measure their volumes� but only volb� is correctly
invariant under the symmetry�
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metry� We have also introduced vertex � at the midpoint of an earlier edge�
and edge ��� �replacing ���� is now listed with a wrap� Note that when we
constrain this edge to have x � �� the constraint is applied to the edge as un�
wrapped from its tail� the head vertex �� is on this constraint when wrapped
to ��� ������ by the symmetry group� Also� two new constraints have been
added to �x edge � �and the axial�point vertex� along the axis of xyz sym�
metry� while letting the edge get longer or shorter� �Three other vertices are
marked fixed� we might have chosen instead to list three constraints for each
of them��

Our previous data�le computed the volume of the dodecahedron by inte�
grating �z � �� dx dy over face �� and over its rotations under the symmetry
group� Here� equivalently� we integrate a symmetrized integrand volp over
just that one face� the only face of a dodecahedron present� Although the
quantity volb� computes the complementary volume correctly at �rst� note
that its integrands �volx� etc�� are not invariant under the group� As we re�
�ne� some new triangles will appear not where their parents were� but rotated
under the group� Therefore this quantity integrated over them will no longer
be correct� Thus the invariant volb� is the quantity we can safely pick to �x�
the complementary volume is then automatically �xed� We leave volb� in for
info�only purposes merely to demonstrate this problem with noninvariant
integrands�

The current Evolver distribution does not include our group xyz because
it is subsumed in the symmetry cubocta� which implements the full point
group of the cube or octahedron� The group elements for cubocta are en�
coded as integers� with the three low�order bits indicating sign changes of the
coordinates� then a two�bit value giving the xyz rotation� and �nally a single
bit indicating if the x and y coordinates are swapped� To change a data�le to
use this built�in group instead of xyz� we can simply change the name 	xyz	
at the top to 	cubocta	 and then replace wrap values � and �� by � and ��

respectively�
There is also a built�in rotation group� which can implement rotational

symmetry of any order around the z�axis� The order of the group is given as
a parameter in the data�le� and can even be changed interactively� the wrap
values are integers in the obvious interpretation� A variant� flip�rotate�
replaces the rotational generator by one which also does a mirror in the xy�
plane�

�� Using edge energies to eliminate faces in mirror

planes

We have demonstrated Evolver data�les for both foams which implement
minimal fundamental units� corresponding to the respective full symmetry
groups� In both cases� these �les include faces in mirror symmetry planes�
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Such faces� of course� must stay planar� and can never really evolve� As we
re�ne the surface� there will be more and more vertices within these faces�
but they will never have any reason to move� In some similar situations� such
vertices will bunch up as a contact line moves across the plane� leading to a
bad triangulation� Our foams do not move much from their initial positions�
so the triangulation does not get hung up in this way� But� still� these extra
elements gain us nothing and will slow down the computations�

To remove them� we can recognize that the area of any face in a �xed
plane can be computed by an edge integral� Typically just one or two edges
are free �within the mirror plane�� and their positions determine the size of
the face�

For the Kelvin foam� Fig� ���left� shows a �le equivalent to that in
Fig� 	��� but with face � �and the vertices and edges required only there�
removed� That face was in the plane z � �� bounded by edge � and the lines
x � y and y � �� Thus we look for a one�form vanishing on those lines� with
exterior derivative dx dy� one such form is y�dx�dy�� The area of the face we
removed can be computed by integrating this form along edge �� as before�
we add half this area to the energy�

Our most recent data�le for the Weaire�Phelan foam� Fig� ���� also had
one face in a mirror plane� In Fig� ���right� we remove this face �� �and the
vertex and edges no longer needed�� and compute its area again with an edge
integral� This time the face is in the plane x � �� and it is bounded by edges
�� and ��� as well as two lines y � �� and z � �� of the mirrored cube
in Fig� ����left�� Thus the area can be computed by integrating �y � �� dz
�which vanishes on the two lines� along those two edges�

These two �les allow the most e�cient calculation of the optimal shape
and cost of the two foams� For instance� the commands at the end of the
data�le for Kelvin tell the Evolver to re�ne a total of six times� leading
to a foam with cost � � ������� using 	��� triangles� The commands in
the other data�le re�ne a total of four times� leading to an approximation
of the Weaire�Phelan foam with cost � � ��	��� using ��	� triangles�
�These computations take about ��	 seconds and � seconds� respectively� on
a Silicon Graphics R		�� machine running at �� MHz�� In both cases� we
believe the resulting approximation is good enough to give the cost of the true
foam accurately to the four decimal places we report� The symmetry features
of the Evolver allow us to make these computations in a very short time�
and also allow further calculations to even greater accuracy� which would be
impractical without using the symmetry�

Color Plates �� and ��� pp� �� and �� in the Appendix� show views from
inside these foams� These images were created with a soap�bubble shader
written for the RenderMan package ��� It uses the laws of thin��lm optics to
render the sheets of the foam as if they were soap��lms of randomly varying
thickness�
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quantity wall
energy
modulus 1/2
method edge_vector_integral
vector_integrand
q1:y
q2:-y
q3:0

constraint 1 formula x=y

constraint 2 formula z=0

vertices
1  .5 .5 0 constraint 1 2
2   1 0 0  fixed
10  1 1 1  fixed

edges
1   1 2 constraint 2 wall
11 10 1 constraint 1
12 10 2 fixed

faces
1 11 1 -12

read

conj_grad;
optimize 100;
hessian_normal;

cost := {
 print
  (12*total_energy)^3/16;
};

g5; {r;u;g12;cost}4;
r;u;g2; r;g;cost;

symmetry_group "xyz"

constraint 1 formula x=6
constraint 3 formula z=6
constraint 7 function x=y
constraint 9 function y=z

quantity volb4 fixed=216
method facet_vector_integral
vector_integrand q1:x-6 q2:y-6 q3:z-6

quantity wall energy modulus 1/2
method edge_vector_integral
vector_integrand q1:0 q2:0 q3:y+6

vertices
5  0 0 0       fixed
6  1 1 1 axial_point constraint 7 9
36 6 -6 0      fixed
17 6 -1.5 2.25 constraint 1
28 6 -1.5 6    constraint 1 3

edges
178 17 28 constraint 1 wall
389 17 28 constraint 1 wrap 1
37  36 17 constraint 1 wall
17   6 17
5    6  5 constraint 7 9
6    5 36 fixed

faces
15 5 6 37 -17
17 17 178 -389 -17 volb4

read
conj_grad;optimize 100;hessian_normal
cost := print total_energy^3/8/1728;
g20; {r;u;g10;cost} 2;
r;u;g5;cost; r;u;g;cost

Fig� ���� These data�les for the Kelvin �left	 and Weaire�Phelan �right	 foams
are equivalent to those in Fig� ��� and Fig� �� respectively� Here we have re�
moved the faces in mirror planes� and compute their areas instead by integrals
along their edges� These are added to the energy computed by the Evolver through
the quantity wall� using an appropriate one�form in each case� In both �les� we
have omitted the viewing transforms� colors� and so forth� which could be imple�
mented as before� The last two lines give sample scripts for evolving the surfaces
down to good approximations to the mathematical foams�
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Appendix� Color Images
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Fig� ���� This is a view from inside the Kelvin foam� using a fairly wide�angle
lens� Near the top� we look along a body diagonal of the cubic lattice� through
successive parallel hexagons of the foam� Near the bottom� we look in a ��� �� �	
direction� through hexagons which alternately tilt towards us and away from us�
Our viewpoint is slightly below the center of our cell� �Brakke and Sullivan� p� ���	
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Fig� ���� This is a view from inside the Weaire�Phelan foam� using a wide�angle
lens� We are inside one of the ���hedra� and near the bottom left� we see one of
its hexagonal faces� Behind that �and a bit above	 is parallel hexagon turned a
quarter turn� part of an in�nite sequence of parallel hexagons receding towards the
bright spot in the middle left� �We are a bit too high in our cell to see all the way
through these�	 Near the top left� we look through an in�nite number of receding
dodecahedra� separated by hexagons seen edge�on� �Brakke and Sullivan� p� ���	


